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ABSTRACT

Numerical models using both the finite difference and finite
element technique are developed to similate the interaction of a
two~dimensional pipe-soil-wave system. The wave-induced pressure
distribution in the soil region without an enbedded pipe is first
studied and solutions validated by comparing with existing analyti-
cal and experimental results. Numerical models are then used to
solve the dynamic presgure distribution around buried pipes.

Results are cbtained for both a square pipe and a circular
pipe and comparisons are made for different cases of input wave
and soil parameters. It is found that the embedded pipe causes an
increase of pressure at the top region of the pipe and a decrease
at the bottom. Pressure changes predicted by the finite difference
approach are slightly different from the finite element results,
Parameter studies are conducted to determine the influence of some
of the significant factors on the pressure distribution pattern

around the buried pipe.
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PREFACE

This is the second in a series of reports describing the results
of a research study conducted by personnel of the Civil Engineering
Department at Texas A&M University on Offshore Pipelines. The study
is funded by institutional grant 04-158-18 to Texas A&M University
by the National Oceanic and Atmospheric Administration's Office of
Sea Grants, Department of Commerce. The task of this project is to
develop improved design procedures for offshore pipelines. The first
report of this project, entitled "A Bibliography of Offshore Pipeline
Literature", contained approximately 400 pertinent references on
offshore pipelines arranged under the headings of various key topics.
A third report is in preparation covering the experimental phase of
the study, which involved measurement of fluid pressures in a pervious
medium subjected to wave action. The study was conducted in a labora-
tory fiume.

The authors would like to thank Professor Robert 0. Reid, Depart—
ment of Oceanography, for his effort and time spent in reviewing
this report. The helpful suggestions and comments of Dr. Charles F.
Kettleborough, Department of Mechanical Engineering, are also sin-

cerely appreciated.
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CHAPTER I

INTRODUCTION

Although major advancements in offshore pipelining technology
have been made in the last decade, severe storms still pose a sig-
nificant hazard as witnessed by recent recorded failures (3). Pipe-
lines, which are usually laid on the sea bottom, are exposed to
the destructive forces of waves and currents. Huge waves produced by
hurricanes induce significant bottom fluid velocities often causing
severe damage to unburied pipelines even in great depths., Movements
of pipelines were recorded in 240 feet of water during the passage
of Hurricane Betsy (3). The ASCE Task Committee on Flotation Studies
(1) reported that unburied pipeline sections were moved as far as
1400 feet under the influence of Hurricane Flossy in 1956. The more
than $200 million loss in pipeline facilities sustained off the
Gulf Cosst during 1964 and 1965 from two major hurricanes attests to
the importance of environmentsl factors in offshore pipeline
operations. In order to protect pipelines from these hostile forces
of nature, offshore cperators in recent years have indicated a
growing recognition of the need for burying submerged lines.

Pipeline burial is & complicated problem to deal with, It

involves a three-way interaction among the buried pipe; the soil

The citations on the following pages follow the style of the
Journal of the Hydraulics Division, Proceedings of the American
Society of Civil Engineers.




sediments around it; and the hydrodynamic forces produced by surface
waves. FPipelines that are adequately buried normelly have minimal
hydrodynamic forces exerted upon them, However, the action of erco-
sion and liguefaction caused by wave agitation can still be quite
effective down to a significant depth in the soil on certain occa-
sions. ©So far, pipeliners have been unable to define a complete
mechanistic picture of what actually happens when a buried pipeline
fails., Thedir engineering design on this phase of pipeline stability
has been based largely on empiricsal results and experience. It is of
vital importance to the pipeline industry to maintain continuous
operations and structural integrity of their pipelines. As pipeline
burial is an expensive operation, pipeline failures often result in
very costly repairs and production losses. There now exists an urgent
need to develop a rational design procedure to predict the required
stability conditions for burying pipelines.

Several analytical methods have been proposed for determining
the velocity and pressure distributions in and near a porous sea bed,
As yet, no one result has been conclusive. The study of wave-induced
porous flow depends upon the assumed laws of hydrodynamics in the
permeable medium and the boundary conditions at the interface. The
addition of a foreign body ~ the buried pipeline - tends to make the
problem more complex. It is the objective of this study to investi-
gate wave-induced dynamic pressure distributions in the soil media
in the immediate vicinity of the pipelines. Numerical models using

both the finite difference and finite element technique are developed



to simulate the pipe-soil-wave system. The dynamic damping of wave
pressure through soil sediment and its distribution arocund an embedded
impervious object - the pipeline - are obtained. By varying the

wave, soil and pipe conditions, parametric relaticns which may help

to explain pipeline dynamics can be determined. Comparisons with
experimental results are made possible by a wave-tank laboratory study
conducted at the same time. By knowing the flow patterns and pres-
sure distributions around the pipeline, failure mechanisms of scouring
and liguefaction can then be explored through continued research.

This study is considered as an initial step in pipeline stability
research, and is intended to help provide insight into the compli-

cated pipeline burial problem,



CHAPTER II

LITERATURE SURVEY

Wave Damping Studies

Most  of the classical thecries dealing with the movement of
waves in shallow water assume that energy is neither gained nor lost
during their travel, and that the vertical component of fluid parti-
cle velocity is zero at the bottom. But recent studies have shown
that the oscillatory motion of waves and the associated translating
pressure differentisls along a porous ses bed can induce percolation
of bottom water in and out of the bed, A significant loss of wave
energy can occur due to a dissipating mechanism actusted by the in-
duced porous flow, The damping of waves approaching the shore and
the erosion of bottom sediments are onliy two of the problems which
may be affected by bottom percolation.

The effect on the surface wave as a resuit of viscous damping
induced in a permeable bed was first studied by Putman (15) in 1949,
In his study, he assumed a horizontal sea bottom with permeabls
material (sand) having uniform permeability. By applying Darcy's
Law for the fluid flow through the porous medium and analyzing the
problem as cne of potential flow, he derived an eqguation for the
wave energy dissipation function., He went on to show that this loss
of wave energy can be reflected in the reduction of wave height due

to the dissipation of mechanical energy accompanying the viscous



flow of fluid within the sand medium.

In 1957, Reid and Kajiura (16) re-examined Putnam's approximate
method by using a more rigorous approach. They found that his analy-
sis was Jjustified in view of the smallness of the permeability factors
commonly encountered. They also showed that Darcy's Law is an ade—
quate approximation for unsteady porous flow for this problem,
However, in both papers, they used only the classical irrotational
and inviscid wave solution above a region of viscous porous flow,
with continuity in pressure and vertical velocity assumed at the
fluid~goil interface., This leads to a solution in which there is a
discontinuity in the horizontal component of velocity at the inter-
face,

Later , Hunt {10) added in the effect of viscosity on the
damping characteristics of such waves, and stated that this would
reduce the horizontal velocity to zero at the interface. But his
solution still showed a discontinuity of the horizontal velocity at
the interface, and his velocity components in the upper water are not
affected by the permeable bed, which is most unlikely,

Murray (1L4) in 1965 studied the same problem but used a dif-
ferent sei of boundary conditions at the bed surface. He suggested
matching the velocity components in the permeable material at the
interface. Ccnservation arguments and consideration of the rate of
doing work at the fluid-bed interface were applied in his analysis.
His solution of the damping characteristics are different from that

given in previous studies. He alsc showed that stresses are not



continuous at the interface as was assumed by Hunt., It is to be
noted, howevef, that the equations of motion in the permeable bed
used in Murray's paper are somewhat confusing. Instead of using
the specific velocity in the linearized friction terms, he used the
seepage velocity, and therefore, the limiting case when the fre-~
gquency beccomes infintely small cannot be reduced to the well-known
Darcy's Egquation,

In 1973, Liu (13) used the equations of motion for the per-
meable medium as appeared in Reid and Kajiura's paper, and he solved
the porous flow problem by employing a Boundary-Layer-Approximation
approach, Continuity of pressure and velocity components are re-
quired as boundary conditions at the interface only up to the order
of ¥v. He arrived at approximate solutions for the velocity field
in the porous medium, dependent on the porosity of the bed material.

An  experimental attempt to verify the damping rate predicted
by Putnam was made by Savage (17} in 1953, His results were in
marked disagreement with Putman's formula, but may have been affected
by uncertainties in the elimination of the effect of friction, the
observed instability of the wave train, and the fact that the coef-
ficient of permeability of the bed was not determined in situ.

Sleath (20) in 1970 carefully measured the pressure distri-
bution in the bed directly in a model study by installing pressure
transducers on the side wall of a wave channel. He showed that
stratification of sand in the model bed would cause the mean per-

meability in the horizontal direction to be different from that in



the vertical direction, which is usually assumed to be uniform in all
the other studies. Comparisons of experimental results with theory
based on Putnam's work which accounted for this difference showed

good agreement.

Soil Stability Studies

Unstable bottom soil conditions have often caused severe damage
to offshore pipelines even though they were buried. Sections of
Pipelines can be mcved or floated to the surface by mysterious forces
during storm conditions. Recently, researchers have developed in-
terest 1n one unique type of soil failure ——- sliding or mass move-
ment of sea-bed sediments. This sliding phencmenon is initiated
by waves of sufficient height and period to produce significant pres~
sures on the sea floor. If the surface waves exert encugh pressure,
the scil may become unstable. The magnitude of soil movement
induced may provide large enough lateral forces to cause pipeline
failures. Bea (2) described in his paper how these land slides
damaged two offshore production platforms. Henkel {(9) developed an
analytical procedure tc predict the conditions under which wave—
induced slides might be expected.

Scouring is another phenomenon affecting buried pipeline design
considerations, Sceouring involves the large scale transport of the
sea-bed sediments due to a momentum exchange between rapidly moving
water and the individual grains that form the bed. Sea floor

scouring is mest prevalent during storm conditions which generate



high bottom velccities required to remove the backfilled materials
of pipelines. Once exposed, the pipe becomes subjected to the direct
action of curreni forces which can cause the pipe to move,

Another form of peossible failure is pipeline flotation, Flota-
tlion is often caused by a phenomencn known as soil liquefacticn.
This phenomenon occurs when the pore fluid pressures in the scil
induced by repeated cyclic wave loadings become equal to the total
overburden stresses, reducing the effective shear stresses in the
soil to zero., During liquefaction, the soil sediments hbehave very
much like a dense fluid, and the resulting suspensicn may have a
unit weight high enough to immediately ficat the pipeline. There
is a eritical density of the soil and water mixture at which the
buried pipeline will begin to float through its cover. Brown (6)
has presented a standard type of soil test tc determine specific
gravities required, inferring methods of backfilling and depth of
burial, The ASCE Pipeline Flotation Resesrch Committee (1) has
published "state-of-the-art" tables that yield the necessary specific
gravity for a pipe to stay buried and to keep it from sinking in
agitated sediments. Research on soil liquefaction has been done by
Seed (18) and many others, but a complete mechanistic picture of its
interaction with buried pipelines is still lacking, making it neces-
sary to rely on pipeline weighting or the use of anchors to hold the

pipeline in place,



CHAPTER IIT

DEVELOPMENT AND DESCRIPTION

OF THE NUMERICAL MODEL

Problem Statement

It is the purpose of this study to develop a numerical model
for determining wave-induced pressure distributions arcund a buried
pipeline. Consider Fig. 3.1, which shows & two-dimensiocnal sinusoi-
dal wave in a fluid layer of mean depth h, overlying a homogeneous
porous medium of infinite depth. A pipe of diameter D is embedded
in the porous medium at a burial depth d, The surrounding fluid
has a kinematic viscosity v, and the porous medium a permeability X
and perosity n which describe the fluid flow rate and veoid volume
of the medium respectively. The x-axis lies at the mean free water
surface, and the y-axis is taken to be directed vertically upwards.
We shall be concerned with small amplitude, progressive plane waves
advancing in the direction of the x-axis.

The oproblem involves interaction between the buried pipe and
its surrounding porous material with the surface wave acting as
hydrodynamic loading on the system. Velocity and pressure distri-
bution in the upper fluid layer are influenced by percclastions in the
lower porous layer, and those in this lower laver are in turn influ-
enced by the buried pipe, As waves pass over the porous bed, pres-
sure fluctuation on the fluid-bed interface induce a visccus flow

within the porous medium, causing dissipation of mechanical energy
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Fig. 3.1 - Definition Sketch
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and thus demping of the waves. The orbital motion of the fluid par-
ticles is guickly damped as they travel from the upper fluid layer
into the porous medium as shown in Fig. 3.2. Liu's equation for
pressure distribution in the porous medium is plotted in Fig. 3.3,
showing the exponential damping of dynamic wave pressure with depth
at a specific instant of time. It can be expected that the pressure
field will be altered to some degree if an impervious object such as
a pipe is placed in the upper region of the bed. An understanding of
the pressure distribution pattern around the pipe is impertant for
determining the wave forces acting on the pipe as well as the effec-
tive stresses that exist in the bed.

A region containing the homogeneous bed and embedded pipe will
be considered in the development of a two-dimensional numerical model
for this study as in Fig. 3.5 (p.16). From here on, this region will
be referred to as the problem region in this report. Suitable boun-
dary conditions will be imposed for each individual situation encoun-
tered. The problem is actually treated in a steady state sense as
solutions give pressure distributions for a specified instant of time.
A dynamic time dependent situation can be simulated by changing the
pressure wave profile which is imposed as an upper boundary condition
in the problem (Fig. 3.4). However, complete pressure dissipation is
assumed in each case, which precludes the build-up of pore water

pressure in the bed materials.

Governing Equations

In most practical situations the Reynolds number is based on
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Fig. 3.2 - Schematic Representation of Fluid Particle Orbits
in the Fluid and Soil Media
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Fig. 3.3 - Damping of Wave Pressure through Soil by Liu's
Analytical Solution
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grain sgize and superficial velocity. For viscous flow in a porous
bed, the Reynolds number will be less than unity and Darcy's Law
becomes applicable, The following is the form of Darcy's equation

utilized by Reid and Kajiura (26):

L8y _ 0V L3P ... e e e
na3t T~ K T p ax (3.1)
Tav, _»,_ 13 ... (32
n dt _K, P 9y

where u and v are velocity components in the x and y directions, p
is the dynamic pressure which is the object of concern, and v and

p are the kKinematic viscosity and density respectively of the fluid.
It is assumed that the porous medium is homogeneous, so that the
permeabllity K and porosity n are constant and non-directional.

For unaccelerated flows Eqs. 3.1 and 3.2 can be reduced toc the more

common form of Darcy's equation:

G = K 3p o o v v v v v v v v (3.3)
vp 3x

oK oL (3L
vp Ay

If +the fluid is considered incompressible, the flow in the

porous medium must satisfy the Continuity equation of the form

3 B e L (305)

Differentiating Egs. 3.1 and 3.2 and substituting into Eq. 3.5 gives
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the Laplace eguation

2 2
32,32 .9
2 2

. . (3.6)
ax Ay

2
or Vp=20 R N

which governs the distribution of pressure p in the porcus medium.

Boundary Cecnditions

In order to solve the Laplace Bauation (Eq. 3.6), a zone

defining the problem region shown in Fig. 3.5 is considered.

Interface boundary conditions

/
Lataral E’ﬂ;’d’ﬂt,,,—f’—,_.,,,,,—,,f
////boundory

conditions

Bottom boundary

7

Fig. 3.5 =~ Problem Region Boundary Conditions
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Interface Boundary Conditlions

The +top boundary of the problem region represents the fluid-bed
interface of the model. Its width is taken to be one wavelength L
iong. The pressure variation at that surface must be defined and
imposed as a boundary condition for both the finite difference and
finite element numerical models which are used in this study.

Several theories were considered which may be utilized to give
pressure variations at this inferface boundary. An equation can be
developed from the Linear Wave Theory (11) for the dynamic wave

pressure p; in the upper fluid layer as

cosh k (y+h)il. ... (3.8)

P, = P& [A cos (kx - ot) ~och LD

where g is the acceleration of gravity, A the wave amplitude, k
the wave number and ¢ is the radian wave frequency. The subscript
1l is used to indicate the upper fiuid layer (see Fig. 3.1) and 2
refer to the lower porous medium. If y = -h, then P, will be the

pressure variation along the interface deseribable as

- Acos (kx —ot)f . v . v v v . .. . (3.9)
po p cosh kh

Since Linear Wave Theory assumes an impervious bottom condition, it

becomes inadequate in describing the preblem under consideration.
Sleath (20) took into consideration a stratified porous bottom

layer and obtained an equation for the general pressure distribution

in the porous medium as follows:
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[ . 1
x
cosh k (ﬁ“) {y+h+b)
p, = Apg J cos (kx-ot) (3.10)
2  cosh kh X L s '
pe
cosh k (“f{‘) b
B ¥

where b is the depth of the porous layer, Kx and Ky are the permeabi-
1iby ccefficients in the x and y directions respectively. By setting
¥y = =h, Eq. 3.10 can also be reduced to give the pressure variation

along the interface as:

= Apg
po COSh kh [:COS (kx"'ct)] P T T T T S (3.1}.)

His study over-simplified the problem as he assumed an invicid
irrotational wave solution above a region of viscous porous flow.
The permeability K term drops out of Eq. 3.10 when y is s&t equal to
-h, reducing it to that predicted by the Linear Wave Theory (Eq. 3.9).
Liu (12) considered the viscous effect in both the upper fluid
layer and the lower porous medium and developed equations for the

pressure field in both regions as follows:

p, = (-%%%—g—) l:(% sinh k{y+h) -
i cosh k(y+h{]exp[%(kx-cti] e e e e e e (3012
Py =(£%5) 8xp [k(y+h)] exp {i (kxuat)] e e e e e .. (3.13)

where D = cosh kh + Q%) sinmh kh . . . . . . . . . . . .. (3.1
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and Q=-%{’-.....................(3.15)

After rearranging and retaining only the positive parts of Rgs. 3.12

and 3.13, the following is obtained.

P, = P-%g--[c:c-s (kx-ot) cosh k(y+h) - %-sin (kx - ot)sinh
k(y+h)].................(3.3.6)
= Phg .
P, == | cos (kx-ot) cosh k{y+h) + cos (kx - ot) sinh
k(y+h)].................(3.17)
By setting y = ~h, the pressure variation at the fiuid-bed inter-

Tace can be given by either one of the above equations as

P, = 3%5- [cos (kx-ot) cosh k(y+h{] e e e e e e . (3.18)
Eq. 3.18 will be used to provide the interface boundary condi-

tions for the problem region in the numerical study.
Lateral Boundary Conditions

Lateral poundary values of the problem region in Fig. 3.5 can
alsc be determined from Eq. 3.17 by varying y for a given time t if
fixed boundaries are desired. Since the width of the problem region
is taken tc be one wavelength both the left and right boundary

values are identical. Another approach can thus be made by using a
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successive boundary condition in which boundary wvalues on one side

are set equal to those on the other.
Pipe Boundary Conditions

The pipe will be located at the center of the problem region
but can be moved vertically along the y-axis to simulate the depth
of burial of the pipe. The pipe is considered to be impervious and
Boundary Layer Theory applies for the region assoclated with the

pipe surface,
Boundary

region
around

pipe

Pipe
surface

Fig. 3.6 - Pipe Boundary Conditions

According to classical theory, the pressure within the boundary
layer is approximately ccnstant in the direction normal to the sur-

face., Hence a normal derivative boundary condition

_agzo

= o e e e e e e e e e e e e (3019)
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has to be satisfied on the pipe surface. Here, n will be used to

denote the normal direction radially outward from the pipe surface.
Bottom Boundary Conditions

The vertical extent of the flow field in this study is flexible.
Different bottom boundary conditions can be imposed on the problem
region to simuiate variations of bottom soil conditions., In Fig. 3.3,
it can be seen that the dynamic pressure value is almost damped to
zero at a depth of about one wavelength as is predicted by Eq. 3.17.
In a Iarge part of this numerical study, a depth of one wavelength
is considered, thus the flow field of interest becomes a square
region and zero pressure values can be used as bottom boundary con-
ditions. However, in some cases, an impervious bottom layer may be
encountered at a depth less that L. Thus the normal derivative

condition for the pressure

dp
P (S I-l0))

can be imposed as a boundary condition at the bottom.
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CHAPTER IV

PINITE DIFFERENCE APPROXIMATION

Normalization of Governing Equations

Eq. 3.6 can be expressed in non-dimensional form by introducing
sultable dimensionless variables. Dimensionless distances and pres-

sure shall be defined as;:

Es'c:g— 0<xx<1

- B -

v =3 0=y=<l e e e e (BT
5 - B

Py

where p' is the hydrostatic pressure and W and B are the width and
height of the problem region considered (Fig. L4.1).
With <these dimensionless variables the Laplace eqguation

(Eq. 3.6) can be written as

. 2= ¢ 2=
pPdp ,P3p _
2 2+2_2"O --oc---conn(h.2)
B3 x WOy
or
2= 2 2=
22+ 22 =0 ... (3)
- W -2
99X vy

Por ' convenience, the bar notation assceciated with the dimen-

sionless quantities will be dropped in the following sections with

the understanding that dimensionless x,y and p are used throughout

the chapter.
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Grid Point System

In the numerical solution of a partial differential eguation
the dependent variables are assumed to exist at a finite number of
regulariy spaced values of the independent wvarisbles known as grid
points. The derivatives are replaced by finite difference and the
differential equation is then replaced by en algebraic eguation which
is to be solved numerically. Before attemphting to derive the finite
difference approximation of the derivatives, it is necessary %o
define a grid point system in phe region occupied by the independent
variables,

The main objective of this study is to determine the pressure
field near the pipe. For ithis reason, the grid system is designed
to have a finer mesh immediately around the pipe, offering smaller
spacings and thus more points of interest in that region. Fig. 4.2
and Fig. 4.3 show grid point systems around a square pipe and a cir-
cular pipe respectively. In both cases, finer meshes surrcunding
the pipe can be formed by subdividing the regular grid system.
Subscripts (i, j)} denote the grid point positions with i indicating
the row and j the column of the system. Grid sizes can be determined
by dividing the width and height of the problem region by the number

of spacings in each direction.
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fquations for Derivatives in Finite Difference Form
Finite Difference Form of the Governing Equations

The basic principle in extablishing a finite difference approx-
imation to the derivatives of a dependent variable at a point is the
application of a Taylor's series expansion teo the value of that vari-
able in the vicinity of that point.

Fig., bL.h shows a set of grid points with spacings of Ax and

Ay in the x and y directicns respectively.

O T—
G
-1,
& & 5
(R | i) LI+t
hH
3
1+41,]

Fig. 4.4 - Arrangement of Grid Points

Eq. 4.3 can be written in finite difference form by using a
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three~point cehtral differences approximation as

By, gt TP P

2133 i: 3""‘1 +
Ax
2 D, .— 2p. . * p. .
(B\ Pl"'l: J pl:J P1+1: d = (}_{_ )_{_)
-w-/ 2 O . - . . . . .
&y
Rearranging, we have
+ + +
My g t R, g oy 1, 5" P51, 4
Pi.3 2(1+ER) . (4.5)
2 2
where E = (B/W)” and R = (Ax/Ay) R TS

Hence the value of p at a point (i, j) can be determined if the

conditions of its neighboring points are knovm.

Finite Difference Forms of Boundary Conditions on Pipe Surfaces
Pipes having different geometric configurations require a dif-
ferent formulation technique for developing the finite difference
equations on the pipe boundaries. For the immediate purpose, a
square pipe will first be considered as it presents a simple geo-

metric form to to solved.

Square Pipe . Fig. 4.5 shows a scheme of_boundary points that
can be imposed on the surface of a square pipe. Nodal points (4, 0
and 2) are grid points lying on the pipe surface., Point 1 is a
fictitious point inside the pipe. In order to develop a finite dif-

ference equation for point 0, the following procedure is taken:
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Fig. 4.5 - Boundary Grid Points on Surface of a Square Pipe
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Taking the normal derivative in the x~direction, we can write

Eg. 3,19 as;

A € /e

By - using a forward difference approximation, this can be writ-

ten in finite difference form

.oeow (L.8)

or

Pp ™ Pg v+ o e e e e (L.9)

The fictitious point 1 can be eliminated and replaced by point 3.

This approximation is acceptable only if the grid spacing Ax is in

the order of the boundary layer thickness around the pipe.
Substituting Eq. 4,9 into Eq. 4.5 we have a finite difference

equation for the boundary point O,

+ +
2p; g1 * ER(p; 4 5 Piyg, ;)

i, 2(1 + ER) « e e s (hi10)

Likewise, finite difference equations can be determined for all the

other btoundary polnts on the pipe surface.

Circular Pipe. ©Since a circular.pipe houndary is considered
to be irregular, it is usually difficult to arrange for the pipe
surface to fall at regularly spaced grid points, Therefore, a dif-
ferent technigpue has to be developed for writing finite difference

equations for boundary points on the curve surface.
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Fig. 4.6 shows a scheme of grid points imposed on the circular
pipe. For simplicity of presentation, let us consider square grids
and assume spacings comparable to the boundary layer thickness on
the pipe surface. Points 1 ~ 24 are grid points that are lying
on or very close to the circular boundary. Points a - p are ficti-
tious grid points inside the circular pipe. Points A ~ T lie on
normal direction vectors joining the inner fietitious lines with
outer regular grids. One difficulty introduced into this problem
comes from the irregular stars at points 2, 3, 4, ete. Considering
point 2 for example, the finite difference expression for that
point includes the value of fictitious point P. In the last section,
For the case of a square pipe, this was eliminated by using the
specified normal derivative condition of pressure values at that
surface. Now, however, point p does not lie on the normal direetion
vector connecting point 2, so that a different treatment has to be
presented.

Introducing a point A as shown in Fig, 4.6, line A-2 is normal

to the pipe surface. By using the Linear Interpolation Method, we

have:
_ - Al
P, =P, * (pp - pl) ST c r s or e e e e e eoww (B11)
or
Dl (pA} = AP (Pl) + A1 (pp) N T 1=

Also, to the same order of approximation, the normal derivative

boundary condition can be written as:
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9P . =
o ST O € T ).
or

L T T P €/ 2 1)
Substituting p, into Eq. 4.12 we obtain

pl (p,) = Ap(p) + Al{pp) R e )
Likewise

po(py) = Bo(p ) + pB(p,) .« . . ... ... ... (b16)

on(ph) - Cn(po) + oC(pn) R R A

nm(ps) = Dm(pn) + nD(pm) O )

mT(pg) = E7(p ) + mE(pT) R € P L=3

50 that equations can be written for all the irregular grid points
around the pipe surface in terms of internal fictitious grid point
values., Notice that one of the fictitious points in each equation is
repeated in the next equation. Equations for points 1, 7, 13 and 19
can be written in terms of regular grid point values as if they

were on a flat surface as in the last section. For example:

l}pl=P2h+P2+2P25.......-.-....()-I-.ZO)

hpT = pg *+ pgt 2P27 O € B=))

By combining all the above equations, fictitious values can be eli-
minated by substitutions, and relations for pressure functions at

grids points around the pipe can be developed in terms of neighboring

33
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regular grid péints.
Relaxation Method

The ILaplace equation (Eq. 3.6) is an elliptic partial differen—
tial equation and can be solved by an iterative technique eslled the
Reiaxation Methcd. This is essentially an implicit difference method
where the calculation of an unknown pivotal value necessitates the
solution of a set of simuitaneous equations. Consider the finite

difference equation (Eq. 4.10) for any point (i, J)

) + ER( )

+ +
(g g v Ry g Pioa, 3 7 Pier,

Py, 57 SRR

A set of equations can be written for the whole net work of grid
points within the problem region of concern., By the Relaxation Method,
unknown values in the i+lth row are specified in terms of kunown

values in the ith row by a single application of the above expression.
If there are N unknown values in the i+lth row, the general eguation
above must be applied N times across the length of the row. The
resulting system of N simultaneous egquations specifies the N net

values implicitly. The whole sysftem of eguations forms a tridiagonal
matrix and 1s readily solved by a Gaussian Elimination Method if the

boundary conditions of the problem region are known,

Successive-Over-Relaxation Method, We now consider an adgdi-

ticnal method called the Successive-Over-Relaxation Method (SOR)



which will accelerate convergence to the solution of the finite dif-
ference elliptic equation. This is again an iterative technique in
which an improved estimate of the p value is computed by applying

the following equation at every grid poind:

Pn+l =1 n + W(P n+l b n)
1, i,d i,d I

. N £ 8-
»d 1,] (h.23)

where pg ; is the p value at point (i,j) calculated after n
3

iterations p?t? is the p value calculated after n+l iterations and
p?xg-is the improved new estimate by introducing the SOR factor w.

P
The location of the optimum value of the parameter w is different
for each individuwal problem and can be determined only by experimen-
tal trials. A good choice of w is found to be within the range

l<w<2 for rapld convergence,
Exponential Extrapolation Method

- Amother ' method for accelerating convergence in the iterative
procedure is called the Exponential Extrapolation Method. Fig. 4.7
shows a sketch of estimated p values plotted against their correspond-
ing number of iterations. This is an exponential curve which levels
off to the true value of p after an infinite number of iterations.

Pn» Pn.1 and Ph-2 denotes the estimated p value after nth, n—lth a

th
n-2 iterations respectively. A 1 is the difference between Ph and

nd

Ph-1 » and A‘2 is the difference between Pp-1 @nd p._,. It can be

shown that a good approximate p value can be given by the following

relation:

35
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FAN ?
n 1
p =9 - mz L T L T T (£|-. 24)

so that convergence in the Relaxation process can be achieved by
skipping a large number of iterations.

Because of the large system of grid points encountered in this
finite difference problem, these convergence accelerating techniques
are vital in reducing the amount of computer time needed.

A computer program (12) based on the finite difference
approach just developed was written to solve for the pressure
distribution around a buried pipe. Results and usage of the program

will be discussed in Chapter VI,
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Fig. 4.7 - Exponential Extrapolation Scheme




CHAPTER V
FINITE ELEMENT APPROXIMATION
Principles of the Finite Element Method

The finite element methed is essentially a process through

37

which a continuum with infinite degrees of freedom can be approximated

to by an assemblage of subregions (or elements) each with a specified

but now finite number of unknowns. A variational, extremum approach,

valid over the whole region of concern is used in this problem and
the solution is the one minimizing some quantity I which is defined
Dy suitable integration of the unknown gquantities over the whole
domain, I is a function of the unknown function »(x, y) and its

derivatives, and is known as a "functional.

I(p) =j:/f(p, X, ¥, g—i-, %3) dx dy . . . . . . (5.1)
s

The Euler-Langrange Theorem (22) states that if the above integral
is to be minimized over a bounded region S, then the necessary and
sufficient condition for this minimum to be reached is that the

unknown function p(x, y) should satisfy the following differential

egquation
af 3 af 3 af  |_
SP_BX[B(EE)]Way a(?ﬁ)]—o"""'(5'2)
3x 3y



38

within the same region, provided p satisfies the boundary conditions
specified., It can be verified that the equivalent formulation to
Eg. 5.2 is the requirement that the surface integral given below and

taken over the whole region should be minimized

) 1 (gﬁz 222
I = re Bx)+(3y) dx dy . . . . . . . . (5.3}
S

subject to p obeying the same boundary conditions.
The region under consideration is to be divided into subregions
called elements, and the function which we are trying to determine

can be described in each element as

p=[N]{p}e...........-.(5-)4)

{p} © is & column matrix containing nodal wvalues of the function
associated with a single element as indicated by the superscript e,
[N] is a matrix containing the shape function of the co-ordinates.
In order to minimize the functional I with respect to the total
number of parameters {p} associated with the whole domain, we must

write a system of equations

al
ap
al 1 =
a{p} = BI O . . . . - 3 - . . - . (5'5)
op
2

‘

The total function is equal to the sum of the contributions



of each element, such that

I = Zze..............(s.s)

A typical equation then becomes

3T 31°

-agn— 'a":"p"n—"=().....-...---(5-7)

with the summation taken over all the elements.
It can be shown that the element derivatives can be written

in a linear form as

aii}e = [ {eF - {eF e

in which [E} and {F}e are matrices of constants.

Now +the minimizing set of Egs. 5.5 can be written as

gﬁi =[E]{p} +{F}=O N )
[Ei’ ']:Z[Eis J.]‘e N 1)

in which

with summation over all elements.

Formulation of Finite Element Method

Consider again the Laplace Eguetion (Eg. 3.6) in the problem

39
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region shown in Fig. 5.2 subject toc the prescribed value p = on

Py
the outer boundary and the normal derivetive boundary condition

3p

v 0 on the pipe surface inside the region. It can be mathemati-

cally shown by using the Euler-Lagrange Eguation that this is equi-

valent to finding a function p which satisfies the boundary condi-

2
ff[/(—ﬁ +%(-§§-) axdy . . . . . (5.12)

For the approximate solution we shall assume the region to be divided

tions and minimizes .

into finite elements (Fig. 14) in each of which

D

p = [I\Ii, N, ] p; = [N]{p}e c ... (5.13)

vhere {p}e represents a list of p values at the element nodes.

Assuming that p is continuous between elements, then Eq, 5.6
is satisfied and we can confine our attention to a typical element
with node points (i, j, k) as in Fig. 5.1

P as a linear function in x and y

PEat+tbxtey v v v s v e e e e .. (5.14)
= + +
pi a bxi cyi
, = a+ bx + cy, . .15
Py 1 Vs {5.15)
+ -+ +
Px a bxk cyk

Combining contributions from all three node points of the triangulsar
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—p X
Fig. 5.1 - Typical Triangular Element

Outside boundary p P:..pb

O Inner pipe boundary

pa— _a_E:O
on

P4

L/

Z Triangular 2

element VP=0

Fig. 5.2 - Problem Region of Finite Element System
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element
1
= = + + + +
P =53 [(ai + bix ciy)pi + (aj bjx cjy}pj
(ak+bkx+cky)pk] s e e e e e e .. (5.16)
in which
1 xi yl
A=%det |1 x, ¥,| = Area of triangular element . (5.17)
Tx ¥y
and
- —_ b = — - —_
By TR TNy 0 P Ty TV 8 T R T
aj=xkyi-xiyk,bj=yk—yi.cj=xi-xk . (5.18)
By T XYy T XYy o B SV -V G T X=X

Differentiating p with respect to x and y gives

i

op 1

ax-gA[bibjbk} P e e e e e e e e e . (519)
Py
Py

3ap - _1

5y - oA | %1 %5 Sk P S - =00))
Py

Again differentiating Eqs. 5.19 and 5.20 in the i, j, k directions

separately
L(@E):Ei.
op. 9% 24
1
2 (opy . o4
55}"(3::)=2A N =1 D)
o 9D, _ bk
o ax’ " ZA

apk 3x



8 (2B - Si

ap. b 24
i

. (2py - ]

apj 3y 24

c
¢ 3 k
(£2) = o=

apk 3y 24

From Egq., 5.12
T _ffTa
Spi _ax :
pI i}C!'”gg_.
3 9x
® i
3T i}{}f'gg :
Bpk wa

ol

Substituting 35 and'——g into Eq. 5.23, the following matrix equation

ap
is obtained.

31 3T
55‘ op }

=l
£l
L,
;_l
C.a
[

3 (3my 4 3R .
22y + B2

Ip. 3y

2 2y , 3.
ax

d a

23y 4 2.

apk 9x oy

3y

2 (&p
3PJ Yy

op, 9y

PPl [ %
b,b ,
el (P
Py \ P
Py
®;
Py

dxdy
dxdy

2 (33)] axdy

(5.22)

(5.23)

(5.24)
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or

b.b, +ec.c., b.b, +tec.c, bb +c.c T.
ii i1i i i) ik ik i
aT 1
== {bb. +ce. bbb, +e.c. bbb +ec.c A (5.25)
op A i Tii 5l 3% Cix T %%k [P
-+ +
bkbi ckci bkbj + ckcj bkbk Ckck Pk

Thus for each element

This is the same equation as Eq. 5.8 except that {F} € is taken to

. v v .. . (5.26)

be zero in our problem, [E:]thus formed is called the Element
Stiffness Matrix (ESM),

By ' summing up all the elemental contributions

;%i:Z[E]3P£e=O (52D

a Global Stiffness Matrix (GSM) is formed.

%%. = [%SM}{ p % =0 . i i e e e oo . (5.28)

The above eguation is then solved by the Gaussian Elimination Method.
Boundary Condition Considerations

Boundary - conditions feor the problem of interest can be divided
into two cases (Fig, 5.3).
(i) a boundary with the value of p specified

1 T 1)
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(ii) an impermeable boundary with the normal derivative

condition
glr;no.. e e e e e e e (5.30)
P=p,
pP=p P=Py

P=P,
or 2P .o if impe
3n"3 if impermeable

Fig. 5.3 - Boundary Conditions

A  type (i) boundary condition is utilized on the outer boun-
deries cf the rectangular region. Their specified values can be
obtained from Liu's analytical equation as before (see Chapter ITI},
and can easily be implemented in the finite element solution by
meking modifications in the Global Stiffness Matrix.

The type (ii} boundary condition exists on the pipe surface
and the bottom boundary of the problem region if an impermeable

layer is encountered, and therefore belongs to a general category
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of derivative boundary conditions

i)-;g--i-a.:p-{--"b=O+

5y N € 9 3

in which a and b are constants. The implementation of this type of
boundary condition in the finite element solution invelves adding
te the functional of Eg. 5.12 another integral pertaining tc the
boundary surface which, on minimization, automatically yields the
boundary condition. In the general context by the Euler-Lagrange

Bquation this integral is simply
2
(ap+%p")ds . . v v v v . v s e e e .. (5.32)
in which 8 is the surface wave condition (ii) applies, and ¢ and «

are constants, Upon minimization, the contribution from this integral

for each boundary element is found to be

0 0 0 P 0
=L =% 23

0 3 z P, + 5 e e e .. . (5.33)
=L =% a2

0 3 3 Py 5

and must be added to the Element Stiffness Matrix during formulation.
(i, j, k) are the node points of the triangular element, and 2 is

the length of one side of the element which constitutes the boundary
of interest. However, in our problem, a and b in Eq. 5.31 are equal
to zero, In such a case, « and q would alsc be zerc thus canceling

out the contribution of Eq. 5.33. This greatly simpliifies the



solution of the problem because no additional consideration is
needed for the normal derivative boundary condition, and Eg. 5.30
can be auntomatically satisfied without specifying values at the

boundary points.

System of Finite Eiements

In this study, elements of triangular shape are used. These
elements can be graded in shape and size to follow arbitrary boun-
daries and to allow for regions of rapid variation of the funetion
sought., TFig., 5.4 shows how the rectangular flow region can be
subdivided into finite elements. In this figure, essentially two
systems of triangular elements are utilized -~ an outer region of
regular~sized elements and an inner region of finer, irregular-
sized elements immediately surrounding the pipe. Fig. 5.5 is an
enlargement of the ianer region around a square pipe, an area
where our interest is mainly concentrsted., As for a circular
pipe, its curved boundary can be approximated by small triangulsar
elements constituting a multi-sided polygon as shown in Fig. 5.6,

The size and number of these inner elements is determined by the

accuracy required in the problem. Different systems of elements can

be designed for the region depending on the size of the pipe and
its depth of burial specified. One thing should be kept in mind,
however, that elements of regular shape and size should be utilized
as much as possible so that an sutomatic generation of elements for

the region by the computer itself is possible.
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A computer program (11) based on the finite element approach
just described was written to solve the pressure distribution
problem, Results and usage of the program will be discussed in

the next chapter.
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CHAPTER VI

SOLUTION DEVELOPMENT AND RESULTS

Validation of Numerical Solutions

As part of this study, a validation check of the finite differ-
ence and finite element models with existing analytical and experimen-
tal results was undertaken, Its purpose was to test the accuracy of
the numericsl models, the solution schemes and the computer coding
before they were applied to determine the dynamic pressure distribu-
tion that exist about a buried pipeline in a later section of this
chapter.

Analytical results were available for the dynamic wave pressure
distribution in the soil without a buried object in the region.
Notable are Liu's (13) and Sleath's (20) studies previously discussed
in Chapter ILL. An experimental study of the pressure distribdbution
around a buried pipe was conducted by Campbell (7) as an integral
part of this overali project. Dynemic wave pressure refers to the
pressure fluctuation produced by a surface wave form with respect to
the still water hydrostatic pressure as shown in Fig. 6,1. In this
study, a perfectly drained condition was assumed in the scil region
so that the dynamic pressure variation in the soil is completely in
phase with the surface wave profile. As shown in Fig. 6.1, there
is an increase of pressure under the crest and a decrease under the

trough with respect to the normal hydrostatic pressure. This dynamic



Surface wave profile
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Fig. 6.1 - Dynamic Pressure Variation under a Surface Wave
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pressure evaluafed at a point in the scil region when added to the
hydrostatic pressure will give the pore water pressure at that point.
Fig, 6.3 shows the damping effect on the dynamic pressure with
depth, and is plotted at several points across the surface wave pro-
file. It can be observed that the damping rate is greater in the soil
that in the upper fluid medium. The maximum dynamic pressure appears
directly under the crest or trough of the wave, The critical arrange-
ment of wave and pipe positions which give this maximum pressure
effect is shown in Fig, 6.2 with the pipe placed directly under the

crest of the wave.

Cosine pressure wave Profjle

4p*"_"‘_-_T_—-‘_"““h,‘

Pipe
directly
under

wave crest

I
|
|
l
|
|
|
|

Fig. 6.2 - Critical Arrangement of Wave and Pipe Position

Finite Difference Model

In Liu's solution for determining the pressure distribution in
the soil region, he assumed an infinite depth for the scil medium.

His result as plotted in Fig. 3.3 shows that pressure values will be
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Fig. 6.3 - Damping of Dynamic Wave Pressure with Depth
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damped to nearly zerc at sbout one wave length below the mudline,

In order to make comparisons between Liu's solution and the finite
difference results, a square region with sides equal to one wave
length was utilized in the finite difference scheme, and & zero dyna-
mic pressure value is specified as a bottom boundery condition in the
square region.

Eq. 3.6 was solved by the finite difference relaxation scheme
with boundary values specified by choosing arbitrary wave and soil
characteristics., This was then compared to Liu's results. It was
found that the numerical solution depends on the grid size chosen in
the problem region. A tendency to overpredict the pressure function
when the grid spacings were too large and vice versa when the grid
spacings were too small was found. Fig. 6.4 shows a plot of the
various solutions using different grid sizes together with Liu's
solution curve for the same wave and soil parameters. In this figure,
S0R stands for Buccessive-Over-Relaxation gpproach. It can be seen
that the scolutions with grid sizes of 33 x 33 and 37 x 37 were almost
identical to Liu's curve., It appears that an optimum value for the
grid size does exist, and the solution generated by using that par-
ticular grid size will compare well with Liu's results. Fig. 6.5
illustrates the same effect by plotting different resuits against
different grid sizes. From this study, it was concluded that the
optimum grid size for the problem of interest is 37 x 37. As a
result, this particular grid size was utilized throughout the finite

difference study, with the assumption that it can be applied for all
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situations, including the placement of a pipe in the problem region.
The set of finer grids immediastely surrounding the pipe was
formed by subdividing from the regular 37 x 37 grid system such that

their values can be readily obtained by a Linesr Interpolation Method.

Finite Element Model

In checking the validity of the finite element model, a sguare
region with simple triangular elements and sides equal to one wave.
length as shown in Fig. 6.6 was first used. A study of the grid
size effect showed that this model is less sensitive than the finite
difference model. Better results were generally obtained with finer
elements, However, due to a limited computer memory space, a grid
system of 19 x 19 as shown in Fig. 6.6 was utilized. Zero value
bottom boundary conditions were again specified, and results were
obtained and compared to Liu's analytical solution. Fig. 6.7 is a
plot showing four cases of pressure distribution in the soil region

by using wave and soil parameters listed in Teble 6.31.

Table 6.1 - Wave and Soil Parameters T

Case 1 2 3 &
H (in.) 3.2 2.0 1.0 0.5
T (sec.) 1.19 1.09 1.48 1.62
L (ft.) 4.5 4.0 6.17 6.25
h (ft.) 0.5 0.5 0.5 0.5
K (ft.z) 5.62x10_10 5.62}{10“10 5.62x10—10 5.62}(10-10
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Comparisons between the finite element and Liu's results show ex-
cellent agreement for a1l four cases. It can be concluded thet the
finite element model would give results as least as good as Liu's re-
sults, In addition, it can be modified to suit other situations as
well.

In order to compare the numerical model results with experimen-
tal results generated by a wave-tank study (7), 2 slight modification
had to be applied to the bobtom boundary. In the wave-tank experiment,
a soil depth of six inches was used, and the dyneamic pressure distri-
bution was expected to be affected by the presence of the impervious
bottom of the tank. Modifications of the finite element region were
necessary to simulate this impervious hottom boundary in the numerical
model., The height of the problem region was shortened to an equiva-
lent soil depth of six inches. Fig. 6.8 shows four cases of the pres-
sure distribution measured in the soll along with the finite element
results. As seen, curves obtained from the finite element model were
shifted to the right of the experimental results. Better sgreement is
evident for the curves corresponding to the gmaller waves. It is be-
lieved that this shifting was largely due to the difference in the top
boundary values appearing in the two approaches. In the experimental
study, small sand ripples were formed on the bottom during the course
of pressure measurements., This irregularity might have caused some
difference in the interface pressure values from those analytically
predicted by liu's solution which assumes a horizontal ses bottom.

However, judging from the shape of the curves, solutions cbtained by
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both methods follow much the same damping pattern. Better agrecment
could be achieved if actual, measured, boundary values were used as
input in the finite element model instead of using Liu's analytical

relations,

Pressure Distribution Pattern Around Buried Pipes

For demonstration purposes, a square pipe along with a circular
pipe is considered in both the finite difference and finite element

method solution.

Finite Difference Model

A square region with an embedded pipe (see Figs. 4.2 and L.3)
was firgt considered in this model. The input wave and soll para-

meters are ag shown in Table 6.2:

Table 6.2 - Wave and Soil Parameters II

H (in.) |T (sec.) |L (ft.) [ h (ft.)! K (ft.z)

1.2 1.04 4.69 11.2 | 4.83x10°°

The finite difference computer program (12) was first applied
to a circular pipe with a diameter equal to L/18, The center of the
pipe was located at a depth of 2.5 pipe-diameters below the mud line
and at the center of the problem region., A wave profile position
type (i) at the time instant t = 0 (Fig. 3.L4) was specified on the

interface boundary, and the bottom boundary values were taken to be
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zero., The resulting computer output provided pressure wvalues at all
grid points in the problem region around the pipe.

Pressure values along the circular pipe surface are plotted in
Fig. 6.9. Also plotted are initial pressure values existing in the
soil sediment before the pipe was embedded in the regicon. A compari-
son of the twc curves shows the effect of the introduction of the
embedded pipe on the pressure distribution immediastely surrounding
the pipe. A slight increase of pressure (about 10%) at the top of
the pipe and a decrease (about 20%) at the bottom of the pipe can be
noted.

A square pipe with sides equal tc L/18 and located at the same
depth was considered next. The same boundary conditions and wave
profile position as above were gppliied and results are plotied in
Fig. 6.10. 1In this case, a more pronounced effect was observed in
the pressure changes around the pipe, most probably due To the
existence of sharp edges of the pipe. The results show an increase
of about 40% at the top surface and a decrease of about 30% at the
bottom. This same result can be seen in Fig. 6.11 in which pressure
values are plotted along the center line A-B as shown. The houndary
condition %§-= 0 on the pipe surface also appears in the resulting
curve. The change of pressure along a vertical face of the square
pipe is shown in Fig. 6.12,.

In order tc find the maximum effect under a progressive surface,
a dynamic situation was simulated by moving the surface wave profile

as if it were progressing with time (see Fig. 3.4), and results are
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DYNAMIC WAVE PRESSURE (psf)
1.6

0.0 0.4 0.8 12 i 20
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Fig.6.11— EFFECT OF PIPE ON PRESSURE IN SOIL ALONG A-B
( FINITE DIFFERENCE METHOD )
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DYNAMIC WAVE PRESSURE ( psf )
0.0 0.4 0.8 1.2 1.6 2.0

oY 1

° With pipe
a Without pipe

C
pressure wave profile
/—\J\mud Iiuse
b / A I \
i i B ol
- D

Fig. 6.12 - Effect of Pipe on Pressure in Soil along ¢—p
(Finite Difference Method)
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plotted for the instants when t = T/h (Fig. 6.13) and t = T/8 (Fig.
6.14), In this way, pressure variations at any point under a moving
wave can be generated. The maximum pressure was found to occur at
the instant when time t = 0, or when the pipe is directly under a

wave crest or trough.

Pinite Element Model

The finite element computer program {12) was applied to the
same wave and scil conditions in Table 6.2 in a region as shown in
Fig. 5.4. Fig. 6.15 shows a plot of the pressure values around a
square pipe for the time instant of t+ = 0. A similar result was
obtained as in the finite difference model, only that the increase
in pressure at the top of the pipe is somewhat smaller in this case,
and the decrease in pressure at the bottom is more pronounced,

Figs. 6.16 - 6.18 show the finite element results for a circular pipe
at different time instants under the same wave and soil conditions

as above, Pressure values along the center line of the pipe are
plotted in Fig. 6.19 for a wave profile as shown in the figure.

A comparison plot of the finite difference and finite element
results are shown in Fig. 6.20. Due to an absence of experimental
data in this study, a conclusive validation of the two methods was
not possible. However, similar patterns of results were generally
obtained by both methods in all cases. A definite conclusion can thus
be drawn from these studies, thait the introduction of an embedded pipe

in a porous medium generally causes an increase of pressure at the
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DYNAMIC WAVE PRESSURE (pst)
o .2 .4 .6 .8 1.0 1.2 34 1.6 1.8 20
I I L

I T 1 I

DEPTH

© Without pipe

A With pipe
A
! Pressure Wave Profile
Mud Line
]

— T —y

Fig. 6.19 - Effect of Pipe on Pressure in Soil along A-B
(Finite Element Method)
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top region of the pipe and a decrease at the bottom. The choice of a
more reliable model between the finite difference and finite element
methods lies on an assessment of accuracy of the two methods, 1In
general, it can be shown that soiutions obtained by the two methods
for a certain regular mesh system are identical, and so are their
orders of approximation (22), However, the presence of a specified
gradient boundary condition on the pipe surface introduces differences
between the two solutions. Better accuracy is expected in the finite
element approach since the normal derivative condition on the pipe
surface can be introduced naturally in the problem, while the finite
difference appreoach depends on an approximation of the normal deriva-
tive equatiocn, which again depends on mesh sizes which have to be
comparable to the boundary layer thickness surrounding the embedded
pipe. HNevertheless, the finite difference model is still useful to

serve as a check on results obtained by the finite element approach,

Parameter Studies

In this section an effort will be made to illustrate the influ-
ence of several significant parameters on the pressure distribution
around the pipe. The finite element scheme shown in Fig. 5.6 was

used exclusively in this study.

Wave Height Variations

The influence of different wave heights on the distribution of

pressure around a cireular pipe was studied. A wave as shown in



80

item (1) of Table 6.1 provided the dynamic surface loading. Pressure
values at the top and bottom of the pipe are plotted versus different
wave heights in Figs. 6.21 and 6.22 respectively. Both figures show
a linear relation in which pressure increases under increasing wave

heights, and a greater gradient was observed in the second curve.
Wave Length Variations

A study was then made on the effect that different wave lengths
have on the pressure distribution around the pipe. Wave height was
kept at a constant 3,2 inches in all cases. The other parameters were
the same as in the last section. Resulis are plotted in Fig. 6.23 in
which pressure at a certain point on the pipe is shown to vary expo-

nentially with changing wave lengths.
Pipe Size Variations

In +this study, the center of the pipe was fixed at a depth of
%@ L and the diameter of the pipe was varied. A wave having a 3.2
inch height, a 1.62 second period and a length of 6.25 feet was used
as a surface condition in each case. The resulting pressure at the
top of the pipe in different pipe sizes is shown in Fig. 6.24. A
nonlinear relation is evident in which pressure increases with in-

creasing plpe sizes.
Burial Depth Variations

The effect of the depth of burial of a pipe was studied by
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moving.the pipe down the center line of the region and solving the
problem at different depths. The same wave conditions as in the
last section were used in this study and the pipe diameter was set
equal te L/18 in all cases. A resulting nonlinear curve is plotted

in Fig. 6.25 showing a decrease of pressure with increasing burial

depths.

85
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Fig. 6.25 - Effect of Depth of Burial on Pressure
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CHAPTER VII
CONCLUSIONS AND REMARKS

The fundamental objective of this research was to develop a
numerical model capable of determining the dynamic pressure distri-
tution around a buried pipe under surface wave loading., Two ap-
proaches were proposed in this study, namely, the finite difference
model and the finite element model. Both methods can be applied to
study the influence of wave-pipe-soil interaction on the pressure
distribution pattern by specifying different boundary conditions on
the problem region.

A validation study of the two models applied to a flow region
without an embedded pipe was undertaken by comparing the predicted
results t0 those obtained from Liu's analytical sclution and experi-
mental datsa from a wave channel model study. The good comparisons
cbtained supported the extension and use of the models to evaluate
the pressure distribution pattern arocund the embedded pipe in the
flow reglon.

The general conclusions reached as a result of a limited para-~
meter gtudy are:

1. The introduction of a buried pipe into a region of porous medium
influences the magnitude and distribution of the wave-induced
dynamic pressure in the sediments surrounding the pipe.

2. The burled pipe causes an increase of pressure at the top region

of the pipe and a decrease at the botton.
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3. The maximum pressure occurs when the crest or trough of the
surface wave 1s directly over the pipe centerline.

L, The change of wave helghts, wave lenghts, pipe sizes and burisl
depths of the pipe, &ll have definite influences on the pres-
sure distribution pattern around the pipe.

The finite difference mcdel produces slightly different results
from the finite element model due to a complication of specified
gradient boundary conditions on the pipe surface. The finite element
model is expected to be more accurate and relisble as the gradient
boundary condition is implemented naturally on fhe pipe surface.
However, both numerical mcdels can serve as a check on each other,

In summary, the development of the models described herein
shouid serve to advance the "state~of-the—art!" in analysis of buried
offshore pipelines. The next logical step would be an incorporation
of the proposed numerical models with more complete model tests in

studying the buried pipeline stability problem.
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CHAPTER VITI

RECOMMENDATIONS

The following areas are recommended for further research in

extension of this study.

1.

The numerical models developed were idealized to simulate a
steady state situation for a perfectly drained condition in the
porous wmedium. Wave-induced pressure is assumed to dissipate
completely in the porous medium so thet the build-up of pore
water pressure by cyclic wave action as actually exists cannot
at present be predicted by the models. The pore water pressure
build~-up phenomenon appears to be important in analyzing pipe
flotation problems because it is thought that this build-up
during storm conditions leads to liquefaction of bottom soil
sediments. In order to better understand the entire dynamic
situation, experimental tests should be performed to provide
additional information so that corrective adjustments can be
added to the numerical models.

The computer program might be modified to determine the effect-
ive stress values of soil sediments around the buried pipe so
that results can be applied immediately in analysis of stabili-
ty problems.

Higher order wave theories and heterogeneous soil conditions

might be considered for incorporation with the numerical models.
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APPERDIX IT -~ NCOTATICN

The following symbols have been used in this report:

A = wave amplitude

B = depth of problem region

b = soil depth

D = pipe diameter

d = pipe burisgl depth

ESM = Element Stiffness Matrix

GSM = Global Stiffness Matrix

g = gravitational constant

H = wave height

h = sti1ill water depth

I = finite element functional

X = permeability

k = wave number

n = porosity

je) = wave induced pressure

P, = pressure at fluid-bed interface
Py = pressure in upper fluid layer
p2 = pressure in porous bed

p' = hydrostatic pressure

P, # boundary pressure value

D = dimensionless pressure
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B0R = Successive-Over-Relaxation

T = wave perilod

t = time

u = fluid particle veloeclty component in x-direction
v = fluid particle velocity component in y-direction
W = widith of problem region

W = Successive-Over-Relaxation factor

X = dimensionless distance in x-direction

b = horizontal coordinate

Y = dimensicnless distance in y-direction

N = vertical coordinate

o = mass density of water

v = kinematic viscosity

o = wave fregqguency





